JavaScript机器学习之线性回归

译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师。

原文: Machine Learning with JavaScript : Part 1

译者: Fundebug

为了保证可读性,本文采用意译而非直译。另外,本文版权归原作者所有,翻译仅用于学习

使用JavaScript做机器学习?不是应该用Python吗?是不是我疯了才用JavaScript做如此繁重的计算?难道我不用Python和R是为了装逼?scikit-learn(Python机器学习库)不能使用Python吧?

嗯,我并没有开玩笑…

其实呢,类似于Python的scikit-learn,JavaScript开发者也开发了一些机器学习库,我打算用一下它们。

JavaScript不能用于机器学习?

  1. 太慢(幻觉?)
  2. 矩阵操作太难(有函数库啊,比如math.js
  3. JavaScript只能用于前端开发(Node.js开发者笑了)
  4. 机器学习库都是Python(JS开发者)

JavaScript机器学习库

  1. brain.js (神经网络)
  2. Synaptic (神经网络)
  3. Natural (自然语言处理)
  4. ConvNetJS (卷积神经网络)
  5. mljs (一系列AI库)
  6. Neataptic (神经网络)
  7. Webdnn (深度学习)

我们将使用mljs来实现线性回归,源代码在GitHub仓库: machine-learning-with-js。下面是详细步骤:

1. 安装模块

$ yarn add ml-regression csvtojson

或者使用 npm

$ npm install ml-regression csvtojson

2. 初始化并导入数据

下载.csv数据

假设你已经初始化了一个NPM项目,请在index.js中输入以下内容:

const ml = require("ml-regression");
const csv = require("csvtojson");
const SLR = ml.SLR; // 线性回归

const csvFilePath = "advertising.csv"; // 训练数据
let csvData = [],
X = [],
y = [];

let regressionModel;

使用csvtojson模块的fromFile方法加载数据:

csv()
.fromFile(csvFilePath)
.on("json", (jsonObj) => {
csvData.push(jsonObj);
})
.on("done", () => {
dressData();
performRegression();
});

3. 转换数据

导入的数据为json对象数组,我们需要使用dressData函数将其转化为两个数据向量xy:

// 将JSON数据转换为向量数据
function dressData() {
/**
* 原始数据中每一行为JSON对象
* 因此需要将数据转换为向量数据,并将字符串解析为浮点数
* {
* TV: "10",
* Radio: "100",
* Newspaper: "20",
* "Sales": "1000"
* }
*/
csvData.forEach((row) => {
X.push(f(row.Radio));
y.push(f(row.Sales));
});
}


// 将字符串解析为浮点数
function f(s) {
return parseFloat(s);
}

4. 训练数据并预测

编写performRegression函数:

// 使用线性回归算法训练数据
function performRegression() {
regressionModel = new SLR(X, y);
console.log(regressionModel.toString(3));
predictOutput();
}

regressionModeltoString方法可以指定参数的精确度。

predictOutput函数可以根据输入值输出预测值。

// 接收输入数据,然后输出预测值
function predictOutput() {
rl.question("请输入X用于预测(输入CTRL+C退出) : ", (answer) => {
console.log(`当X = ${answer}时, 预测值y = ${regressionModel.predict(parseFloat(answer))}`);
predictOutput();
});
}

predictOutput函数使用了Node.js的Readline模块:

const readline = require("readline");

const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});

5. 完整程序

完整的程序index.js是这样的:

const ml = require("ml-regression");
const csv = require("csvtojson");
const SLR = ml.SLR; // 线性回归

const csvFilePath = "advertising.csv"; // 训练数据
let csvData = [],
X = [],
y = [];

let regressionModel;

const readline = require("readline");

const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});

csv()
.fromFile(csvFilePath)
.on("json", (jsonObj) => {
csvData.push(jsonObj);
})
.on("done", () => {
dressData();
performRegression();
});


// 使用线性回归算法训练数据
function performRegression() {
regressionModel = new SLR(X, y);
console.log(regressionModel.toString(3));
predictOutput();
}


// 将JSON数据转换为向量数据
function dressData() {
/**
* 原始数据中每一行为JSON对象
* 因此需要将数据转换为向量数据,并将字符串解析为浮点数
* {
* TV: "10",
* Radio: "100",
* Newspaper: "20",
* "Sales": "1000"
* }
*/
csvData.forEach((row) => {
X.push(f(row.Radio));
y.push(f(row.Sales));
});
}


// 将字符串解析为浮点数
function f(s) {
return parseFloat(s);
}


// 接收输入数据,然后输出预测值
function predictOutput() {
rl.question("请输入X用于预测(输入CTRL+C退出) : ", (answer) => {
console.log(`当X = ${answer}时, 预测值y = ${regressionModel.predict(parseFloat(answer))}`);
predictOutput();
});
}

执行 node index.js ,则输出如下:

$ node index.js
f(x) = 0.202 * x + 9.31
请输入X用于预测(输入CTRL+C退出) : 151.5
当X = 151.5时, 预测值y = 39.98974927911285
请输入X用于预测(输入CTRL+C退出) :

恭喜!你已经使用JavaScript训练了一个线性回归模型,如下:

f(x) = 0.202 * x + 9.31

感兴趣的话,请持续关注 machine-learning-with-js,我将使用JavaScript实现各种机器学习算法。

关于Fundebug

Fundebug专注于JavaScript、微信小程序、微信小游戏、支付宝小程序、React Native、Node.js和Java线上应用实时BUG监控。 自从2016年双十一正式上线,Fundebug累计处理了30亿+错误事件,付费客户有阳光保险、达令家、核桃编程、荔枝FM、微脉等众多品牌企业。欢迎大家免费试用




您的用户遇到BUG了吗?

体验Demo 免费使用